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Our conclusions can be summarized in the References 
following points: 

a) The present data on pp high momentum 
transfer elastic scattering can be described by 
the Orear formula (1). 

I. 
2. 

b) These data are in disagreement with the 
predictions of the Fermy type statistical models, 
and seem to support the models of high momen- 
turn transfer processes like the Wu and Yang 
model or Hagedorn thermodynamical model. 

3. 

4. 
The authors would like to thank Professors 
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ki and W. Czyi for very helpful comments on 
the statistical phenomena. They are also in- 
debted to Professors M. Miesowicz and J. Gierula 
and Drs. J. Bartke and K. Zalewski for discussions 
and encouragement. 
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Sum rules for strong interactions are derived from analyticity and high energy bounds for the scattering 
amplitudes of particles endowed with spin. Those bounds, much more stringent than for the spinless 
case, are strongly suggested by unitarity. 

In a recent paper [l] general consequences 
from the algebra of current components have 
been deduced. In particular, it has been shown 
that, using the equal time commutation relations 
of the time components of currents, 

one obtains a relation of the form 

; Su(v, u I,~z,t)dv = F(t) , (2) 

where a is defined through the expansion of the 
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amplitude 

t 
PV 

= $ ./d’x exdiq24 ti2 / [jl”‘(d ,j~“)(O)] / P,i , 

(3) 
as 

t I-iv= aPpPv + blPpQV + b2PpAv + . . , (4) 

where P = i(pl +p$, Q = %q +q$, A = P2 - P1 ; 

Pl+Ql = p2+42; q = &4? 3 = 4;; v = (PQ), t= A2; 

* Supported in part by the U.S.Air Force Office of 
Scientific Research Grant No.66-29. 
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and, for simplicity, 1 PI), Ifis) are taken as spin- ity) the presence of a 6(x-y) or of its higher 
less particles. finite order derivatives. 

As already pointed out in refs. 1 and 2, eq. (2) 
exhibits the very peculiar and important feature 
that the dependence on the “masses” ul and 242 
associated with the external currents is washed 
out by the v integration. 

The independence of the right hand side of 
eq. (2) on ~1 and 2.42 can be also expressed by 
saying that the residues of all singularities of 
the left hand side in ~1 and 242 compensate 
through the v integration. 

Thus a first consequence can be drtwn by 
multiplying both sides of (2) by (~1 - ml)(u2 - rn$ 
and performing the limits ~1 2 - YYZ~ 2. ml and 
m2 are the physical masses of strongly inter- 
acting particles with the same quantum numbers 
of the currents j(o), j(p) (e.g. the p-meson if 
j, is the isospin%urre&). In this limit a is 
dominated by the graph of fig. 1 and we write 
the rigorous relation 

This suggests that the “strong interaction 
sum rule” (7) might be deduced in a more direct 
way only from strong interaction requirements 
like analyticity, unitarity and high energy limits *; 

The aim of this work is to show that this is 
indeed the case and that eq. (7) is a very partic- 
ular case of a general family of strong interaction 
sum rules involving particles with higher spin. 

Our discussion of the “strong interaction sum 
rules” stems from the fact that if an analytic 
function flv) satisfying a dispersion relation 

f(v) = _!_ Irn&‘) dv’ 

ll v’ -v 

lim 2 (Ul - mf)(u, - m&v, ~1, %,t) = 
U1,2-m1,2 

is subject to the asymptotic bound, for v -+ 30, 

If(V)j < 8 Pi-l, (9) 

it must satisfy the condition 

lImf(v)dv= 0 . 

= (const.) Im A(v) t) , (5) 

where A( v, t) is defined through the following de- 
composition of the p-n scattering amplitude: 

T = (E~P)(E~P)A+Q{(E~P)(E~Q)+(E~P)(E~Q))B -I 

The physical importance of the previous 
formulae follows from the fact that in the case 
of scattering of higher spin particles some of 
the amplitudes are forced by unitarity to be sub- 
jected to extremely stringent high energy bounds, 
like those in (9) and therefore satisfy eqs. like 
(10) **. 

+ k1Q)k2Q)C1 + k19)‘3 . (6) 

In so doing, one derives from eq. (2) the sum 
rule 

JImA(v,t)dv = 0 , (7) 

which involves only the scattering amplitude of 
strongly interacting particles. 

We want to stress the fact that eq. (7) is actu- 
ally independent of any detailed assumption on 
the current-current commutators. Indeed it 
could be obtained from the commutation relations 
between any couple of vector wcurrentsn pro- 
vided this commutator involves (because of local- 

We will fund thus that, for higher spins, uni- 
tarity leads for some amplitudes to bounds much 
stronger than s(ln s)~ obtained by Froissart [3] 
for the spinless case. This is due to the appear- 
ance in the unitarity sum over intermediate 
states of additional energy powers coming from 
the projection operators of higher spin particles. 

Let us start with a very heuristic illustration 
of the Froissart bound for a scalar particle am- 
plitude A( s, t). Let us use at high energy the op- 
tical theorem together with the obvious condition 
that the total cross section is larger than the 
elastic one, 

ImA(s,O) > 
1 

s” 
1677 Lrs(s-4m2) -ST 4m2’ 

;A(s,t)j 2 dt . 

(11) 
. 

JP Jv 

Fig. 1. 

If we assume a constant shape of the diffraction 
peak, we get 

1 A(.?, 0) 1 2/s < const. Im A , (12) 

leading to the simple condition 

* One of the authors (S. F.) wishes to thank M. Cell- 
Mann for a very illuminating advice on this point. 

** The close connection between sum rules and high 
energy limits has been previously noted by S.Gasio- 
rowicz (to be published). 
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;A(s,O)l < const. s . (13) 

Of course the crude condition of constant dif- 
fraction peak could be dropped by allowing slow 
logarithmic variation (e.g. like the case of moving 
Regge poles); this would involve extra logarithmic 
terms in the high energy bound. Let us now apply 
the same kind of argument to p-n scattering where 
we use the “orthogonal decomposition” 

T = cul, + flli3 + yl>, + 616 , (14) 

where 

I, = (E1P’)(Efl’), Ip = ${(E~P’)(E~Q) +(~2P’)(~1Q)~, 

$, = (E~Q)(E~Q), I6 = (~+W$?, 

P’ = P - @$ Q,, , NP = ~p,,P(SP,,QP~~ , 
P /L 

(PQ) = (PIN) = (QN) = 0 , (15) 

and the amplitudes LY, p, 7 and 6 are connected 
to A, B, C 1 2 by linear combinations. 

Using again the optical theorem and asking 
that the total cross section be larger than the 
a!, p, y, 6 contributions f we get (PI2 - s2 for 
s --Am) 

s4J;.(s,t) /2 dt < const.s2utot , 

s2sQ2 \p(s,t) s2t dt i const.s2atot , 

,/Q2 / y(s, t) I 2t2 dt < const.s20tot , 

s4fQ4 / 6(s, t) / 2t4 dt < const.e2atot . (16) 

Finally, expressing 01, 8, y and 6 in terms of 
A, B, Cl 2 and using the constant shape assump- 
tion, we dbtain the bounds 

~A(s,O) ~ < const. s-l, lB(s,O)] < const., and 

\C1,2(s,O) j C const. s (17) 

Of course our “derivation” of the bounds (17) 
is very heuristic. It is likely that, as in the 
spinless case, the more systematic use of uni- 
tarity in each partial wave might lead to rigorous 
bounds which, apart from logarithmic factors, 
coincide with our eqs. (17). 

If we are in presence of isospin it is reason- 
able to think that more stringent limitations 
could follow for the isospin flip amplitudes. We 
shall assume that, if the behaviour of an isospin 
amplitude for scalar particles is SO, the corre- 
sponding behaviours for A, B, Cl and C2 are 
given by 

:’ Note that no interference terms appear because of 
our orthogonal decomposition. 

A(s,O) - ,a-2 , B(s,O) - .s@-l , C1 2(s,0) - se. 
, 

(18) 
Those asymptotic formulae could be obtained 

from a Regge pole model, since the exchan 
spin (Y leads to high energy behaviours so- 5 

e of 
, 

sa-1, sff for A, B, Cl 2 respectively. The con- 
clusion of this discussion is that in p-n scattering 
IdIe get a sum rule of the kind (10) for A if o! < 1, 

andfor B if a< 0 *. 

It is important to realize that the results ob- 
tained are in no way limited to spin one particles. 
For example in n-N scattering, writing T = 

= A + (yQ)B, we get A - soI, B - sa-1, whereas 
in N-N scattering the amplitudes Ti defined 

through [4] 

T= XiTiPi , 

P1 = lPIN, P2 = i[(pP)lp+(ypJV)lN] , 

P3 = (iyNP)(iypN,, P4 = (yNr4, P5 = Y;Y: 

show the behaviour .@, sff-l, s (Y-2 N-l , s , s@ 
respectively, where CY depends upon the isospin 
decomposition in the crossed (N-s) channel. 

A general investigation of the meaning and ex- 
perimental validity of the strong interaction sum 
rules is deferred to further work. We treat here 
the simple forward p-a scattering already con- 
sidered in ref. 2. We treat the isospin variable 
be decomposing the amplitude T as T = TOP0 + 

+ TIP1 + T2P2, where PO 1 2 are the projection 
operators in the isospin ei’gknstates of the crossed 
channel 71 + 71 -+ p + p, The high energy behaviour 
of 2’1 will be dominated by the p trajectory (ex- 
perimentally 0 (0) = 

c? 
0.5), whereas T2 will be 

dominated by ouble charge exchange. We shall 
here assume 01 (0) < 0. 

Our discus&n means that we shall have the 
two sum rules ** 

,fIm A(‘)(v,O) du = 0 , (19) 

Jim B(2)(~,0) dv = 0 . (20) 
If we keep only 71, w, cp as intermediate par- 

ticles, we obtain *** 
* The idea that strong interaction sum rules can bc . 

obtained from asymptotic limits has been indepen- 
dently developed by L. D. Soloviev in a beautiful in- 
vestigation (Dubna preprint). However his high 
energy assumptions differ from ou 
for 71-N scattering the assumption r 

s. For example 
B / i s-1 (In ~)-a. 

a’ 1. is stronger than what implied by our unitarity 
arguments. 

** Of courseJIm A(2)(y,~) dv = 0 is trivially satisfied 
by crossing symmetry. 

*** The following couplings have been used: 
gpFg cij,Ptni” ILrk. gwpn •~fiy6 a,wgayp&+. 

&pp+Q! /3ys %.Y’pgaypW. 
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with vw (D 
t 

=*(rn: @-rn2- 
, p m$. 

Subtracting (22) from (23), 
2 

Vwgwpa + Yog,pn = 2 0 * (23) 
Since vw is practically zero, (23) tells that 

the ratio gopn/gwpn is very small, in good 
agreement with the experiment. In the same way 
we get, as in ref. 2, as in [2], a reasonable re- 
lation between gpnn and gpwn. 

In conclusion we have derived sum rules con- 
necting only strong interaction quantities as a 
consequence of analyticity and reasonable argu- 
ments about high energy behaviour. It is impor- 
tant to emphasize the fundamental role played by 
spin in this sort of arguments: we have no rela- 
tion for spinless particles, and the number of 
relations increases very fast with the value of 
the spins of the particles involved. On the other 
side the number of free coupling constants in- 
creases with spin more or less with similar rate 

as the number of equations. We believe that our 
strong interaction sum rules will play an impor- 
tant role in the development of elementary par- 
ticle physics. The sum rules are probably the 
relativistic generalization of the so-called boots- 
trap conditions which could be obtained by impos- 
ing analogous unitarity bounds on each partial 
wave [ 51. 

A beautiful new feature of our results is the 
connection between constants of different dimen- 
sionality like the “electric” coupling gplin and 
the “magnetic” coupling gpwr. It is hoped that 
this will be useful to obtain new interconnections 
between elementary particle properties which 
are unattainable by purely group theoretical 
methods. 
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A new resonance in the i’r’ n-?‘r- system produced in the reaction n-p --‘p7re7r-7i- is found in 33 cm hydrogen 
bubble chamber photographs, with n--momentum 4 700 I 30 MeV. The mass value is 1.63 I 0.03 GeV. 
r z 0.1 GeV. isotopic spin I > 1. production cross-section N 0.1 mb. 

When analysing photos, obtained in a 55 cm 
hydrogen bubble chamber exposed in the beam of 
n--mesons at 4700 f 30 MeV we found a new 
resonance in n’~-n- system, produced in a reac- 
tion: 

7T- f p --+ 71- + p + n + + 7l- (I) 

The mass of the new resonance is 1.63 f 0.03 
GeV, r = 0.1 GeV, isospinl 5 1, and the cross 
section of its production in reaction (1) is N 0.1 
mb. 

Four-prong stars were studied in 60 000 
photos and 504 events of reaction (1) were selec- 
ted. The event was accepted when for this 
particular hypothesis )i2 C 10.5. Protons and 
r+-mesons were identified visually up to momen- 
tum 1 GeV/c and by ionization measurement 
for momentum range up to 1.8 GeV/c. Events 
with higher momentum of positive particles if 
not determined in a unique way were rejected 
(7.5% of selected sample of reaction (1). 

On fig. 1 a spectrum of effective masses of 
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